USER'S MANUAL

HYBRID SOLAR INVERTER 6-12KW

Appliances

CATALOGUE

1. Safety Introductions01
2. Product instructions
2.1 Product Overview
2.2 Product Size
2.3 Product Features
2.4 Basic System Architecture
3. Installation05-21
3.1 Parts list
3.2 Mounting instructions
3.3 Battery connection
3.4 Grid connection and backup load connection
3.5 PV Connection
3.6 CT Connection
3.6.1 Meter Connection
3.7 Earth Connection (mandatory)
3.9 Wiring System for Inverter
3 10 Typical application diagram of diesel generator
3.11 Single phase parallel connection diagram
3.12 Three phase Parallel Inverter
4 OPERATION 22
4.1 Power ON/OFF
4.2 Operation and Display Panel
5. I CD Display Icons
5.1 Main Screen
5.2 Solar Power Curve
5.3 Curve Page-Solar & Load & Grid
5.4 System Setup Menu
5.5 Basic Setup Menu
5.6 Battery Setup Menu
5.7 System Work Mode Setup Menu
5.8 Grid Setup Menu
5.9 The method of CEI-021 Self-Check
5.10 Generator Port Use Setup Menu
5.11 Advanced Function Setup Menu
5.12 Device Info Setup Menu
6. Mode
7. Fault information and processing
8. Limitation of Liability
9. Datasheet
10. Appendix I
11. Appendix II48

About This Manual

The manual mainly describes the product information, guidelines for installation, operation and maintenance. The manual cannot include complete information about the photovoltaic (PV) system.

How to Use This Manual

Read the manual and other related documents before performing any operation on the inverter. Documents must be stored carefully and be available at all times.

Contents may be periodically updated or revised due to product development. The information in this manual is subject to change without notice.

1. Safety Introductions Safety signs

The DC input terminals of the inverter must not be grounded.

Surface high temperature, Please do not touch the inverter case.

The AC and DC circuits must be disconnected separately, and

the maintenance personnel must wait for 5 minutes before they are completelypowered off before they can start working.

Prohibit disassembling inverter case, there existing shock hazard, which may cause serious injury or death, please ask qualified person to repair.

Please read the instructions carefully before use.

Do Not put it in the waste bin! Recycle it by licensed professional!

This chapter contains important safety and operating instructions. Read and keep this manual for future reference.

Before using the inverter, please read the instructions and warning signs of the battery and corresponding sections in the instruction manual.

Do not disassemble the inverter. If you need maintenance or repair, take it to a professional service center.

Improper reassembly may result in electric shock or fire.

To reduce risk of electric shock, disconnect all wires before attempting any maintenance or cleaning. Turning off the unit will not reduce this risk.

Be very cautious when working with metal tools on or around batteries. Dropping a tool may cause a spark or short circuit in batteries or other electrical parts, even cause an explosion.

Please strictly follow installation procedure when you want to disconnect AC or DC terminals. Please refer to "Installation" section of this manual for the details.

Grounding instructions - this inverter should be connected to a permanent grounded wiring system. Be sure to comply with local requirements and regulation to install this inverter. Never cause AC output and DC input short circuited. Do not connect to the mains when DC input short circuits.

2. Product Introductions

This is a multifunctional inverter, combining functions of inverter, solar charger and battery charger to offer uninterruptible power support with portable size. Its comprehensive LCD display offers user configurable and easy accessible button operation such as battery charging, AC/solar charging, and acceptable input voltage based on different applications.

2.1 Product Overview

2.2 Product Size

2.3 Product Features

- Self-consumption and feed-in to the grid.
- Auto restart while AC is recovering.
- Programmable supply priority for battery or grid.
- Programmable multiple operation modes: On grid, off grid and UPS.
- Configurable battery charging current/voltage based on applications by LCD setting.
- Configurable AC/Solar/Generator Charger priority by LCD setting.
- Compatible with mains voltage or generator power.
- Overload/over temperature/short circuit protection.
- Smart battery charger design for optimized battery performance
- -With limit function, prevent excess power overflow to the grid.
- Supporting WIFI monitoring and build-in 2 strings of MPP trackers
- Smartsettable three stages MPPT charging for optimized battery performance.
- Time of use function.
- Smart Load Function.

2.4 Basic System Architecture

The following illustration shows basic application of this inverter.

It also includes following devices to have a Complete running system.

- Generator or Utility
- PV modules

Consult with your system integrator for other possible system architectures depending on your requirements.

This inverter can power all kinds of appliances in home or office environment, including motor type appliances such as refrigerator and air conditioner.

3. Installation 3.1 Parts List

Check the equipment before installation. Please make sure nothing is damaged in the package. You should have received the items in the following package:

3.2 Mounting instructions

Installation Precaution

This Hybrid inverter is designed for outdoor use(IP65), Please make sure the installation site meets below conditions:

- · Not in direct sunlight
- \cdot Not in areas where highly flammable materials are stored.
- · Not in potential explosive areas.
- \cdot Not in the cool air directly.
- \cdot Not near the television Antenna or antenna cable.
- \cdot Not higher than altitude of about 2000 meters above sea level.
- Not in environment of precipitation or humidity(>95%)

Please AVOID direct sunlight, rain exposure, snow laying up during installation and operation. Before connecting all wires, please take off the metal cover by removing screws as shown below:

Considering the following points before selecting where to install:

- Please select a vertical wall with load-bearing capacity for installation, suitable for installation on concrete or other non-flammable surfaces, installation is shown below.
- \cdot Install this inverter at eye level in order to allow the LCD display to be read at all times.
- \cdot The ambient temperature is recommeded to be between -40~60 $^\circ \! \mathbb{C}$ to ensure optimal operation.
- Be sure to keep other objects and surfaces as shown in the diagram to guarantee sufficient heat dissipation and have enough space for removing wires.

For proper air circulation to dissipate heat, allow a clearance of approx. 50cm to the side and approx. 50cm above and below the unit. And 100cm to the front.

Considering the following points before selecting where to install:

Remember that this inverter is heavy! Please be careful when lifting out from the package. Choose the recommend drill head(as shown in below pic) to drill 4 holes on the wall, 72-80mm deep.

1. Use a proper hammer to fit the expansion bolt into the holes.

2. Carry the inverter and holding it, make sure the hanger aim at the expansion bolt, fix the inverter on the wall.

3. Fasten the screw head of the expansion bolt to finish the mounting.

Inverter hanging plate installation

3.3 Battery connection

For safe operation and compliance, a separate DC over-current protector or disconnect device is required between the battery and the inverter. In some applications, switching devices may not be required but over-current protectors are still required. Refer to the typical amperage in the table below for the required fuse or circuit breaker size.

Model	Model	Model	Model
6kW	2AWG	35	24.5Nm
8kW	1AWG	50	24.5Nm
10/12kW	0AWG	55	24.5Nm

All wiring must be performed by a professional person.

Connecting the battery with a suitable cable is important for safe and efficient operation of the system. To reduce the risk of injury, refer to Chart 3-2 for recommended cables.

Please follow below steps to implement battery connection:

- 1. Please choose a suitable battery cable with correct connector which can well fit into the battery terminals.
- 2. Use a suitable screwdriver to unscrew the bolts and fit the battery connectors in, then fasten the bolt by the screwdriver, make sure the bolts are tightened with torque of 5.2 N.M in clockwise direction.
- 3. Make sure polarity at both the battery and inverter is correctly connected.

For 5kW/6kW/4.6/8/10/12kW model, battery connector screw size: M10

DC Battery Input

4. In case of children touch or insects go into the inverter, Please make sure the inverter connector is fasten to waterproof position by twist it clockwise.

Installation must be performed with care.

Before making the final DC connection or closing DC breaker/disconnect, be sure positive(+) must be connect to positive(+) and negative(-) must be connected to negative(-). Reverse polarity connection on battery will damage the inverter.

3.3.2 Function port definition

exceeds 6,themain 6pcsinverter's DIP switch needsto beONposition. And the other inverterDIP switch (1&2) needsto beOFF position.

GS

3.3.3 Temperature sensor connection for lead-acid battery

3.3.3 Temperature sensor connection for lead-acid battery

• Before connecting to the grid, a separate AC breaker must be installed between the inverter and the grid, and also between the backup load and the inverter. This will ensure the inverter can be securely disconnected during maintenance and fully protected from over current. For the 5/6/8KW model, the recommended AC breaker for backup load 5/6KW is 40A,8KW is 50A. For the 5/6/8KW model, the recommended AC breaker for grid 5/6KW is 40A, 8KW is 50A.

• There are three terminal blocks with "Grid" "Load" and "GEN" markings. Please do not misconnect input and output connectors.

All wiring must be performed by a qualified personnel. It is very important for system safety and efficient operation to use appropriate cable for AC input connection. To reduce risk of injury, please use the proper recommended cable as below.

Model	lel Wire Size Cable(mm ²)		Torque value(max)
6kW	8AWG	8	1.2Nm
8kW	6AWG	13	1.2Nm
10/12kW	4AWG	21.1	1.2Nm

Chart 3-3 Recommended Size for AC wires

Please follow below steps to implement AC input/output connection:

- 1.Before making Grid, load and Gen port connection, be sure to turn off AC breaker or disconnector first.
- 2.Remove insulation sleeve 10mm length, unscrew the bolts, insert the wires according to polarities indicated on the terminal block and tighten the terminal screws. Make sure the connection is complete.

Be sure that AC power source is disconnected before attempting to wire it to the unit.

3. Then, insert AC output wires according to polarities indicated on the terminal block and tightenterminal. Be sure to connect corresponding N wires and PE wires to related terminals as well.

4. Make sure the wires are securely connected.

5. Appliances such as air conditioner are required at least 2-3 minutes to restart because it is required to have enough time to balance refrigerant gas inside of circuit. If a power shortage occurs and recovers in short time, it will cause damage to your connected appliances. To prevent this kind of damage, please check manufacturer of air conditioner if it is equipped withtime-delay function before installation. Otherwise, this inverter will trigger overload fault andcut off output to protect your appliance but sometimes it still causes internal damage to the air conditioner.

3.5 PV Connection

Before connecting to PV modules, please install a separately DC circuit breaker between inverter and PV modules. It is very important for system safety and efficient operation to use appropriate cable for PV module connection. To reduce risk of injury, please use the proper recommended cable size as below.

Model	Wire Size	Cable(mm²)
6/8/10/12kW	12AWG	4

Chart 3-4 Cable size

To avoid any malfunction, do not connect any PV modules with possible current leakage to the inverter. For example, grounded PV modules will cause current leakage to the inverter. When using PV modules, please ensure the PV+ & PV- of solar panel is not connected to the system ground bar.

It is requested to use PV junction box with surge protection. Otherwise, it will cause damage on inverter when lightning occurs on PV modules.

3.5.1 PV Module Selection:

When selecting proper PV modules, please be sure to consider below parameters: 1) Open circuit Voltage (Voc) of PV modules not exceeds max. PV array open circuit voltage of inverter.

2) Open circuit Voltage (Voc) of PV modules should be higher than min. start voltage.

3)The PV modules used to connected to this inverter shall be Class A rating certified according to IEC 61730.

Inverter Model	6kW	8kW	10kW	12kW
PV Input Voltage	370V (125V~500V)			
PV Array MPPT Voltage Range	150V-430V			
No. of MPP Trackers	2		3	
No. of Strings per MPP Tracker	1+1 1+1		1.	+1+1

3.5.2 PV Module Wire Connection:

Please follow below steps to implement PV module connection:

- 1. Remove insulation sleeve 10 mm for positive and negative conductors.
- 2. Suggest to put bootlace ferrules on the end of positive and negative wires with a proper crimping tool.

Check correct polarity of wire connection from PV modules and PV input connectors. Then, connect positive pole (+) of connection wire to positive pole (+) of PV input connector.
 Connect negative pole (-) of connection wire to negative pole(-) of PV input connector. Close the switch and make sure the wires are tightly fixed.

*Note: when the reading of the load power on the LCD is not correct, please reverse the CT arrow.

Note:

In final installation, breaker certified according to IEC 60947-1 and IEC 60947-2 shall be installed with the equipment.

3.7 Earth Connection(mandatory)

Ground cable shall be connected to ground plate on grid side this prevents electric shock. if the original protective conductor fails.

3.8 WIFI Connection

For the configuration of Wi-Fi Plug, please refer to illustrations of the Wi-Fi Plug. The Wi-Fi Plug is not a standard configuration, it's optional.

3.9 Wiring System for Inverter

3.10 Typical application diagram of diesel generatoy

(Region:EU)

PD0080G-SPM-EU: 250A DC breaker PD0100G-SPM-EU: 300A DC breaker PD0120G-SPM-EU: 300A DC breaker 2. AC Breaker for gen port PD0060G-SPM-EU: 40A DC breaker PD0180G-SPM-EU: 100A DC breaker PD0120G-SPM-EU: 100A DC breaker 3. AC Breaker for backup load port PD0080G-SPM-EU: 40A DC breaker PD0080G-SPM-EU: 40A DC breaker PD0100G-SPM-EU: 63A DC breaker PD0100G-SPM-EU: 100A DC breaker

Backup Load

3.11 Single phase parallel connection diagram

4. OPERATION

4.1 Power ON/OFF

Once the unit has been properly installed and the batteries are connected well, simply press On/Off button(located on the left side of the case) to turn on the unit.When system without battery connected, but connect with either PV or grid, and ON/OFF button is switched off, LCD will still light up(Display will show OFF), In this condition, when switch on ON/OFF button and select NO battery, system can still work.

4.2 Operation and Display Panel

The operation and display panel, shown in below chart, is on the front panel of the inverter. It includes four indicators, four function keys and a LCD display, indicating the operating status and input/output power information.

LED Inc	dicator	Messages
DC	Green led solid light	PV Connection normal
AC	Green led solid light	Grid Connection normal
Normal	Green led solid light	Inverter operating normal
Alarm	Red led solid light	Malfunction or warning

Chart 4-1 LED indicators

LED Indicator	Messages
Esc	To exit setting mode
Up	To go to previous selection
Down	To go to next selection
Enter	To confirm the selection

Chart 4-2 Function Buttons

5. LCD Display Icons

5.1 Main Screen

The LCD is touchscreen, below screen shows the overall information of the inverter.

1. The icon in the center of the home screen indicates that the system is Normal operation. If it turns into "comm./FXX", it means the inverter has communication errors or other errors, the error message will display under this icon(FXX errors, detail error info can be viewed in the System Alarms menu).

2.At the top of the screen is the time.

3.System Setup Icon, Press this set button, you can enter into the system setup screen which including Basic Setup, Battery Setup, Grid Setup, System Work Mode, Generator port use, Advanced function and Li-Batt info.

4. The main screen showing the info including Solar, Grid, Load and Battery. Its also displaying the nergy flow direction by arrow. When the power is approximate to high level, the color on the panels will changing from green to red so system info showing vividly on the main screen.

PV power and Load power always keep positive

Grid power negative means sell to grid, positive means get from grid.

Battery power negative means charge, positive means discharge.

5.1.1 LCD operation flow chart

5.2 Solar Power Curve

Batt	
Stand-by	
SOC: 36%	
U:50.50V	
I:-58.02A	
Temp:30.0C	Li-BMS

E	Bat	t							
N 1 N	lean N Fotal C lean '	/oltage Current Femp :	e:50.34 ::55.00 :23.5C	IV Cha A Dis Ch	rging Vo charging arging c	ltage Volta urren	:53.2 nge:47 t:50A	V 7. OV	Sum Data
1	fotalS								
									Details Data
	50.38V 50.33V 50.30V	19.70A 19.10A 16.90A	30.6C 31.0C 30.2C	52.0% 51.0% 12.0%	26.0Ah 25.5Ah 6.0Ah	0.0V 53.2V 53.2V	0.0A 25.0A 25.0A	000 000 000	Sum
	0.00V	0.00A	0.00	0.0%	0.0Ah		0.0A	000	Data

This is Battery detail page.

if you use Lithium Battery, you can enter BMS page.

5.3 Curve Page-Solar & Load & Grid

Solar power curve for daily, monthly, yearly and total can be roughly checked on the LCD, for more accuracy power generation, pls check on the monitoring system. Click the up and down arrow to check power curve of different period.

5.4 System Setup Menu

System Se	tup	
		Thisis System Setup page
Battery	System Work Mode	
Setting	Grid Setting Gen Port Use	
Basic Setting	Advanced Function Device Info.	

5.5 Basic Setup Menu

Factory Reset: Reset all parameters of the inverter.

Lock out all changes: Enable this menu for setting parameters that require locking and cannot be set up. Before performing a successfulfactory reset and locking the systems, to keep all changes you need to type in a password to enable the setting.

The password for factory settings is 9999 and for lock out is 7777.

Pas	PassWord				Factory Reset Password: 9999
		XXX	DEL		Lock out all changes Password: 7777 System selfchek: After ticking this item, 4 5 6
	1	2	3		it needs input the password.
	4	5	6	The default password is 1234	The default password is 1234
	7	8	9		
	CANCEL	0	ОК		

5.6 Battery Setup Menu

Battery capacity: it tells US hybrid inverter to knowyour battery bank size.

Use Batt V: Use Battery Voltage for all the settings (V). Use Batt %: Use Battery SOC for all the settings (%). Max. A charge/discharge: Max battery charge/discharge current(0-120A for 5kW model, 0-135A for 6kW model, 0-190A for 8kW model).

For AGM and Flooded, we recommend Ah battery size x 20%= Charge/Discharge amps.

•For Lithium, we recommend Ah battery size x 50% = Charge/Discharge amps.

•For Gel, follow manufacturer's instructions No Batt: tick this item if no battery is connected to thesystem.

Active battery: Thisfeature will help recover a battery that is over discharged by slowly charging from the solar array or grid.

Disable Float Charge: For the lithium battery with BMS communication, the inverter will keep the charging voltage at the current voltage when the BMS charging current requested is 0. It is used to help prevent battery from being overcharged.

Low Power Mode<Low Batt: if selected and when battery SOC is less then "Low Bat" value, the self-consumption power of inverter will be from grid and battery simultaneously. If unselected, the self-consumption power of inverter will be mainly from grid.

This page tells the PV and diesel generator power the load and battery.

Generator		This page tells generator output voltage, frequency, power. And, how
Power: 1392W	Today=0.0 KWH Total=2.20 KWH	niuch energy is used noin generator.
L1: 228V		

Battery Setting

This page tells generator output voltage, frequency, power. And, how much energy is used from generator.

Shutdown 10%: It indicates the inverter will shutdown if the SOC below this value. Low Batt 20%: It indicates the inverter will alarm if the

SOC below this value.

Restart 40%: Battery voltage at 40% AC output will resume.

Recommended battery settings

Battery Type	Absorption Stage	Float Stage	Torque value (every 30 days 3hr)
AGM (or PCC)	14.2V (57.6V)	13.4V (53.6V)	14.2V (57.6V)
Gel	14.1V (56.4V)	14.1V (56.4V)	
Wet	14.7V (59.0V)	13.7V (55.0V)	14.7V (59.0V)
Lithium	Follow its BMS voltage parameters		

5.6 Battery Setup Menu

Work Mode

Selling First: This Mode allows hybrid inverter to sell back any excess power produced by the solar panels to the grid. If time of use is active, the battery energy also can be sold into grid.

The PV energy will be used to powerthe load and charge the battery and then excess energy will flow to grid. Powersource priority for the load is as follows: 1. Solar Panels.

2. Grid.

3. Batteries(until programable % discharge is reached).

Zero Export To Load: Hybrid inverter will only provide power to the backup load connected. The hybrid inverter will neither provide power to the home load nor sell power to grid. The built-in CT will detect power flowing back to the grid and will reduce the power of the inverter only to supply the local load and charge the battery.

Zero Export To Load: Hybrid inverter will only provide power to the backup load connected. The hybrid inverter will neither provide power to the home load nor sell power to grid. The built-in CT will detect power flowing back to the grid and will reduce the power of the inverter only to supply the local load and charge the battery.

Solar Sell: "Solar sell" is for Zero export to load or Zero export to CT: when this item is active, the surplus energy can be sold back to grid. When it is active, PV Power source priority usage is as follows: load consumption and charge battery and feed into grid.

Max.sell power: Allowed the maximum output powerto flow to grid.

Zero-export Power: forzero-export mode, it tells the grid output power. Recommend to set it as 20-100W to ensure the hybrid inverter won't feed power to grid.

Energy Pattern: PV Powersource priority.

Batt First: PV power is firstly used to charge the battery and then used to power the load. If PV power is insufficient, grid will make supplement for battery and load simultaneously.

Load First: PV power is firstly used to power the load and then used to charge the battery. If PV power is insufficient, grid will make supplement for battery and load simultaneously.

Max Solar Power: allowed the maximum DC input power.

Grid Peak-shaving: when it is active, grid output power will be limited within the set value. If the load power exceeds the allowed value, it will take PV energy and battery as supplement. If still can't meet the load requirement, grid power will increase to meet the load needs.

Syste	System Work Mode					
Grid			- Time	Of Use		
Charge		T	ime	Power	Batt	Work
		01:00	5:00	5000	49. OV	Mode2
		05:00	9:00	5000	50. 2V	
\checkmark		09:00	13:00	5000	50. 9V	
		13:00	17:00	5000	51.4V	
		17:00	21:00	5000	47.1V	
$\mathbf{\nabla}$		21:00	01:00	5000	49. OV	

Time Of Use

5000

5000 40%

5000 40%

5000 40%

80%

809

System Work Mode

05:00

08:00

10:00

15.00

18:00

 \sim

Time of use: it is used to program when to use grid or generator to charge the battery, and when to discharge the battery to power the load. Only tick "Time Of Use" then the follow items (Grid, charge, time, power etc.) will take effect

Note: when in selling first mode and click time of use, the battery power can be sold into grid.

Grid charge: utilize grid to charge the battery in a time period.

Gen charge: utilize diesel generator to charge the battery in a time period.

Time: real time, range of 01:00-24:00.

Power: Max. discharge power of battery allowed. Batt(V or SOC %): battery SOC % or voltage at when the action is to happen.

For example:

During 01:00-05:00, when battery SOC is lower than 80%, it will use grid to charge the battery until battery SOC reaches 80%.

During 05:00-08:00 and 08:00-10:00, when battery SOC is higher than 40%, hybrid inverter will discharge the battery until the SOC reaches 40%. During 10:00-15:00, when battery SOC is higher than 80%, hybrid inverter

will discharge the battery until the SOC reaches 80%.

During 15:00-18:00, when battery SOC is higher than 40%, hybrid inverter will discharge the battery until the SOC reaches 40%.

During 18:00-01:00, when battery SOC is higher than 35%, hybrid inverter will discharge the battery until the SOC reaches 35%.

01:00 5000 35%

> It allows users to choose which day to execute the setting of "Time of Use". For example, the inverter will execute the time of use page on Mon/

> Tue/Wed/Thu/Fri/Sat only.

Work

lode2

5.8 Grid Setup Menu

Unlock Grid Setting: before changing the grid parameters, please enable this with password of 7777. Then it is allowed to change the grid parameters. Grid Mode: General Standard, UL1741 & IEEE1547, CPUC RULE21, SRD-UL-1741, CE10-21, EN50549_CZ, Australia_A, Australia_B, Australia_C, NewZealand, VDE4105, OVE_Directive_R25, EN50549_

CZ_PPDS_L16A、NRS097、G98/G99、G98/G99_NI、ESB Networks (Ireland). Please follow the local grid code and then choose the corresponding grid standard.d of 7777. Then it is allowed to change the grid parameters.

Normal connect: The allowed grid voltage/frequency range when the inverter first time connect to the grid. Normal Ramp rate: It is the startup power ramp.

Reconnect after trip: The allowed grid voltage /frequency range for the inverter connects the grid after the inverter trip from the grid.

Reconnect Ramp rate: It is the reconnection power ramp.

Reconnection time: The waiting time period for the inverter connects the grid again.

PF: Power factor which is used to adjust inverter reactive power.

Grid Setting/F(W)				
[F (W)			
0 verfiequency	r	D roop f	40%PE/Hz	Grid
Start freq f	50.20H z	Stop freq f	50. 20Hz	Set4
Start de lay f	0.00s	Stop de lay f	0.00s	
Under fæquend	;y	Droop f	40% PE/Hz	
Start freq f	49.80H z		49.80Hz	
Start de lay f	0.00s		0.00s	

Hv1: Level 1 overvoltage protection point;
Hv2: Level 2 overvoltage protection point;
Hv3: Level 3 overvoltage protection point;
Lv1: Level 1 undervoltage protection point;
Lv2: Level 2 undervoltage protection point;
Lv3: Level 3 undervoltage protection point;
Hf1: Level 1 over frequency protection point;
Hf2: Level 2 over frequency protection point;
Hf3: Level 3 over frequency protection point.

Lf1: Level 1 under frequency protection point; Lf2: Level 2 under frequency protection point; Lf3: Level 3 under frequency protection point.

FW: this series inverter is able to adjust inverter output power according to grid frequency.

Droop f: percentage of nominal power per Hz

For example, "Start freq f > 50.2Hz, Stop freq f < 50.2, Droop f=40% PE/Hz" when the grid frequency reaches 50.2Hz, the inverter will decrease its active power at Droop f of 40%. And then when grid system frequency is less than 50.2Hz, the inverter will stop decreasing output power.

For the detailed setup values, please follow the local grid code.

V(W): It is used to adjust the inverter active power according to the set grid voltage.

V(Q): It is used to adjust the inverter reactive power according to the set grid voltage.

Thisfunction is used to adjust inverter output power (active power and reactive power) when grid voltage changes.

Lock-in/Pn 5%: When the inverter active power is less than 5% rated power, the VO mode will not take effect.

Lock-out/Pn 20%: If the inverter active power is increasing from 5% to 20% rated power, the VQ mode will take effect again.

For example: V2=110%, P2=20%. When the grid voltage reaches the 110% times of rated grid voltage, inverter output power will reduce its active output power to 20% rated power.

For example: V1=90%, O1=44%. When the grid voltage reaches the 90% times of rated grid voltage.inverter output power will output 44% reactive output power.

For the detailed setup values, please follow the local grid code.

P(Q): It is used to adjust the inverter reactive power according to the set active power.

P(PF): It is used to adjust the inverter PF according to the set active power.

For the detailed setup values, please follow the local grid code.

Lock-in/Pn 50%: When the inverter output active power is less then 50% rated power, it won't enter the P(PF) mode.

Lock-out/Pn 50%: When the inverter output active power is higher then 50% rated power, it will enter the P(PF) mode.

Note : only when the grid voltage is equal to or higher than 1.05times of rated grid voltage, then the P(PF) mode will take effect.

Reserved: Thisfunction is reserved. It is not recommended.

5.9 The method of CEI-021 Standard Self-Check

Advanced Function

Secondly, tick "System selfchek", then it will ask you input the pass word, and the default password is 1234.

Note: please don't tick "CEI-021 Report ".

This "System selfcheck" program is valid only after choosing grid type as "CEI-021".

The default password is 1234 After input the password and then tick "OK"`

Inverter ID : 2012041234

Self-Test OK	8/8

Testing 59.S1	Test 59.S1 OK!
Testing 59.S2	Test 59.52 OK!
Testing 27.S1	Test 27.S1 OK!
Testing 27.S2	Test 27.52 OK!
Testing 81>S1	Test 81>S1 OK!
Testing 81>S2	Test 81>S2 OK!
Testing 81 <s1< td=""><td>Testing 81<s1< td=""></s1<></td></s1<>	Testing 81 <s1< td=""></s1<>
Testing 81 <s2< td=""><td>Testing 81<s2< td=""></s2<></td></s2<>	Testing 81 <s2< td=""></s2<>

During the self-test process, all the indicators will be on and the alarm keeps on.

When all the test items shows OK, which means the self-test is completed successfully.

then press "esc" button to quit from this page. Tick "system selfcheck" on the Advanced function menu and tick "CEI-021 Report".

Systemselfchek:Aftertickingthisitem, it needs input the password. The default password is 1234. After input the password and then tick "OK"

Inverter ID : 2012041234				
Self-Test Report				
59.S1 threshold253V	900ms	59.S1:228V	902ms	
59.S2 threshold264.5V	200ms	59.S2:229V	204ms	
27.S1 threshold195.5V	1500m s	27.S1:228V	1508ms	
27.S2 threshold34.5V	200ms	27.S2:227V	205ms	
81>.S1 threshold 50.2Hz	100m s	81>.S1:49.9Hz	103ms	
81>.S2 threshold 51.5Hz	100m s	81>.S2:49.9Hz	107ms	
81≤.S1 threshold 49.8Hz	100m s	81<.S1:50.0Hz	95ms	
81<.S2 threshold 47.5Hz	100m s	81<.S2:50.1Hz	97ms	

This page will shows the test result of "CEI-021 self-check".

5.9 The method of CEI-021 Standard Self-Check

Generator input rated power: allowed Max. power from diesel generator.

GEN connect to grid input: connect the diesel generator to the grid input port.

Smart Load Output: This mode utilizes the Gen input connection as an output which only receives power when the battery SOC and PV power is above a user programmable threshold. e.g. Power=500W, ON: 100%, OFF=95%: When the PV power exceeds 500W, and battery bank SOC reaches 100%, Smart Load Port will switch on automatically and power the load connected. When the battery bank SOC < 95% or PV power < 500w, the Smart Load Port will switch off automatically.

Smart Load OFF Batt

· Battery SOC at which the Smart load will switch off.

- Smart Load ON Batt
- Battery SOC at which the Smart load will switch on. Also, the PV input power should exceed the setting value (Power) simultaneously and then the Smart load will switch on.

On Grid always on: When click "on Grid always on" the smart load will switch on when the grid is present.

Micro Inv Input: To use the Generator input port as a micro-inverter on grid inverter input (AC coupled), this feature will also work with "Grid-Tied" inverters.

- * Micro Inv Input OFF: when the battery SOC exceeds setting value, Microinveter or grid-tied inverter will shut down.
- * Micro Inv Input ON: when the battery SOC is lower than setting value, Microinveter or grid-tied inverter will start to work.

Micro Inv Input ON: when the battery SOC is lower than setting value, Microinveter or grid-tied inverter will start to work.

AC Couple Fre High: If choosing "Micro Inv input", as the battery SOC reaches gradually setting value (OFF), During the process, the microinverter output power will decrease linear. When the battery SOC equals to the setting value (OFF), the system frequency will become the setting value (AC couple Fre high) and the Microinverter will stop working. Stop exporting power produced by the microinverter to the grid.

- * Note: Micro Inv Input OFF and On is valid for some certain FW version only.
- * AC couple on load side: connecting the output of on-grid inverter at the load port of the hybrid inverter. In this situation, the hybrid inverter will not able to show the load power correctly.
- ***** AC couple on grid side: this function is reserved.
- * Note: Some firmware versions don't have this function.

5.11 Advanced Function Setup Menu

Ex_Meter For CT: when in Three phase system with CHNT Three phase energy meter (DTSU666), click corresponding phase where hybrid inverter is connected. e.g. when the hybrid inverter output connects to A phase, please click A Phase.

Meter Select: select the corresponding meter type according to the meter installed in the system.

Grid Side INV Meter2: when there's a string inverter AC couple at the grid or load side of hybrid inverter and there's a meter installed for the string inverter, then the hybrid inverter LCD will show the string inverter output power on its PV icon. Please make sure the meter can communicate with the hybrid inverter successfully.

5.12 Device Info Setup Menu

This page show Inverter ID, Inverter version and alarm codes.

HMI: LCD version MAIN: Control board FW version

6. Mode

Mode I:Basic

Mode II: With Generator

Grid

Mode IV: AC Couple

The 1st priority power of the system is always the PV power, then 2nd and 3rd priority power will be the battery bank or grid according to the settings. The last power backup will be the Generator if it is available.

7. Fault information and processing

The energy storage inverter is designed according to the grid-connected operation standardand meets the safety requirements and electromagnetic compatibility requirements. Before leaving the factory, the inverter undergoes several rigorous tests to ensure that the inverter can operate reliably.

- 1. Inverter serial number;
- 2. Distributor or service center of the inverter ;
- 3. On-grid power generation date;

4. The problem description (including the fault code and indicatorstatus displayed on the LCD) is as detailed as possible.

5. Your contact information. In order to give you a clearer understanding of the inverter's fault information, we will list all possible fault codes and their descriptions when the inverter is not working properly.

Error code	Description	Solutions
F08	GFDI_Relay_Failure	1. When inverter is in Split phase(120/240Vac) or three-phase system (120/208Vac) system, the backup load port N line needs to connect ground;
F13	Working mode change	 When the grid type and frequency changed it will report F13; When the battery mode was changed to "No battery" mode, it will report F13; For some old FW version, it will report F13 when the system work mode changed; Generally, it will disappear automatically when shows F13; If still same, and turn off the DC switch and AC switch and wait for one minute and then turn on the DC/AC switch; Seek help from us, if can not go back to normal state.
F18	AC over current fault of hardware	AC side over current fault 1. Please check whether the backup load power and common load power are within the range; 2. Restart and check whether it is in normal; 3. Seek help from us, if can not go back to normal state.
F20	DC over current fault of the hardware	DC side over current fault 1. Check PV module connect and battery connect; 2. When in the off-grid mode, the inverter startup with big power load, it may report F20.Please reduce the load power connected; 3. Turn off the DC switch and AC switch and then wait one minute, then turn on the DC/AC switch again; 4. Seek help from us, if can not go back to normal state.
F22	Tz_EmergStop_Fault	Please contact yourinstallerfor help.
F23	AC leakage current is transient over current	Leakage current fault 1. Check PV side cable ground connection. 2. Restart the system 2~3 times. 3. If the fault still exists, please contact us for help.
F24	DC insulation impedance failure	PV isolation resistance is too low 1. Check the connection of PV panels and inverter is firmly and correctly; 2. Check whether the PE cable of inverter is connected to ground; 3. Seek help from us, if can not go back to normal state.
F26	The DC busbar is unbalanced	 Please wait for a while and check whether it is normal; When the hybrid in split phase mode, and the load of L1 and load of L2 is big different, it will report the F26. Restart the system 2~3 times. Seek help from us, if can not go back to normal state.
F29	Parallel CANBus fault	 When in parallel mode, check the parallel communication cable connection and hybrid inverter communication address setting; During the parallel systemstartup period, inverterswillreport F29. when all inverters are in ON status, itwill disappear automatically; If the fault still exists, please contact us for help.

Error code	Description	Solutions
F34	AC Overcurrent fault	 Check the backup load connected, make sure it is in allowed power range; If the fault still exists, please contact us for help.
F35	No AC grid	 No Utility Please confirm grid is lost or not; Check the grid connection is good or not; Check the switch between inverter and grid is on or not; Seek help from us, if can not go back to normal state.
F41	Parallel system stop	 Check the hybrid inverter working status. If there's 1 pcs hybrid inverter is in OFF status, the other hybrid inverters may report F41 fault in parallel system. If the fault still exists, please contact us for help.
F42	AC line low voltage	Grid voltage fault 1. Check the AC voltage is in the range of standard voltage in specification; 2. Check whether grid AC cables are firmly and correctly connected; 3. Seek help from us, if can not go back to normal state.
F47	AC over frequency	Grid frequency out of range 1. Check the frequency is in the range of specification or not; 2. Check whether AC cables are firmly and correctly connected; 3. Seek help from us, if can not go back to normal state.
F48	AC lower frequency	Grid frequency out of range 1. Check the frequency is in the range of specification or not; 2. Check whether AC cables are firmly and correctly connected; 3. Seek help from us, if can not go back to normal state.
F56	DC busbar voltage is too low	Battery voltage low 1. Check whether battery voltage is too low; 2. If the battery voltage is too low, using PV or grid to charge the battery; 3. Seek help from us, if can not go back to normal state.
F58	BMS communication fault	 it tells the communication between hybrid inverter and battery BMS disconnected when"BMS_Err-Stop" is active; if don't want to see this happen, you can disable "BMS_Err-Stop" item on the LCD; If the fault still exists, please contact us for help.
F63	ARC fault	 ARC fault detection is only for US market; Check PV module cable connection and clear the fault; Seek help from us, if can not go back to normal state
F64	Heat sink high temperature failure	Heat sink temperature is too high 1. Check whether the work environment temperature is too high; 2. Turn off the inverter for 10mins and restart; 3. Seek help from us, if can not go back to normal state.

Under the guidance of our company, customers return our products so that our company can provide service of maintenance or replacement of products of the same value. Customers need topay the necessary freight and other related costs. Any replacement or repair of the product will cover the remaining warranty period of the product. If any part of the product or product isreplaced by the company itself during the warranty period, all rights and interests of thereplacement product or component belong to the company. Factory warranty does not include damage due to the following reasons:

Damage during transportation of equipment; Damage caused by incorrect installation or commissioning; Damage caused by failure to comply with operation instructions, installation instructions or maintenance instructions; Damage caused by attempts to modify, alter or repair products; Damage caused by incorrect use or operation; Damage caused by insufficient ventilation of equipment; Damage caused by failure to comply with applicable safety standards or regulations; Damage caused by natural disasters or force majeure (e.g. floods, lightning, overvoltage, storms, fires, etc.)

In addition, normal wear or any other failure will not affect the basic operation of the product. Any external scratches, stains or natural mechanical wear does not represent a defect in the product.

8.Limitation of Liability

In addition, normal wear or any other failure will not affect the basic operation of the product. Any external scratches, stains or natural mechanical wear does not represent a defect in the product.

9. Datasheet

Model	6KW-EU	8KW-EU	10KW-EU	12KW-EU
Battery Input Date				
Battery Type		Lead-acid or Li-Ion		
Battery Voltage Range(V)		40-	60	
Max. Charging Current(A)	135	190	220	250
Max. Discharging	135	100	220	250
Current(A)		190	220	200
Charging Curve		3 Stages/ Ec	qualization	
External Temperature		ye	25	
Sensor				
Lilon Battery		Self-adapt	tion to BMS	
PV String Input Data				
Max. DC Input Power(W)	7800W	10400	13000	15600
PV Input Voltage(V)		370V (12	5V~500V)	
MPPT Range(V)		150~	-430V	
Full Load DC Voltage	300-430V		200~430\/	
Range			200 4500	
Start-up Voltage(V)		12	257	
PV Input Current(A)	20+20	26+26	26+26+26	26+26+26
No. of MPPT Trackers	2	2	3	; [
No. of Strings Per MPP1	1+1	1+1	1+1+1	1+1+1
Rated AC Output and UPS				
Power(W)	6000	8000	10000	12000
Max. AC Output	6600	8800	11000	12200
Power(W)	8800 11000 13200			15200
Peak Power(off grid)	2 times of rated power, 10 S			
AC Output Rated	26.1	34.8	43.5	52.2
Current(A)				
Max. AC Current(A)	28.7	38.2	47.8	57.4
Max. Continuous AC	40	50	60	60
Passtnrougn(A)		0.9 loading tr		
Power Factor		0.8 teaunig ti	0.8 lagging	
Voltage	50/60Hz; L/N/PE 220/230V (single phase)			
Grid Type	Single Phase			
Total Harmonic Distortion				
(THD)	<3% (of nominal power)			
DC current injection	<0.5% ln			
Efficiency	1			
Max. Efficiency	97.60%			
Euro Efficiency	96.50%			
MPPT Efficiency	>99%			
Protection				
PV Arc Fault Detection		Integr	ated	
PV Input Lightning		Integr	rated	
Protection				
Anti-islanding Protection	Integrated			

PV String Input Reverse Polarity Protection	Integrate	ed .	
Insulation Resistor Detection	Integrate	ed	
Residual Current Monitoring Unit	Integrate	2d	
Output Over Current Protection	Integrate	ed	
Output Shorted Protection	Integrate	2d	
Surge Protection	DC Type II / AC	С Туре II	
Over Voltage Category	DC Type II / AC	C Type III	
Certifications and Standards			
Grid Regulation	IEC61727/62116,EN50549-1,		
EMC/Safety Regulation	IEC/EN 62109-1,IEC/EN 62109-2, IEC/EN 61000-6-2,IEC/EN 61000-6-4		
General Data			
Operating Temperature Range(℃)	-40~60°C, >45°C Derating		
Cooling	Smart cooling		
Noise(dB)	<50 dB		
Communication with BMS	Rs485; CAN		
Weight(kg)	31		
Cabinetsize(mm)	330x580x252 (Excluding connectors and brackets)	420x650x248 (Excluding connectors and brackets)	
Protection Degree	Ip65		
Installation Style	Wall-mo	ounted	
Warranty	5 years		

Definition of RJ45 Port Pin for RS 485. This port is used to communicate with energy meter.

No.	RS 485 Pin
1	
2	
3	
4	485-B
5	485-A
6	
7	
8	

RS 485 Port

10. Appendix I

Definition of RJ45 Port Pin for BMS 485/CAN.

No.	BMS 485/CAN Pin
1	485_B
2	485_A
3	GND_485
4	CAN-H
5	CAN-L
6	GND_485
7	485_A
8	485_B

BMS 485/CAN Port

Rs232

No.	WIFI/RS232
1	
2	ТХ
3	RX
4	
5	D-GND
6	
7	
8	
9	12Vdc

WIFI/RS232

This RS232 port is used to connect the wifi datalogger

11. Appendix II

- 1. Split Core Current Transformer (CT) dimension: (mm)
- 2. Secondary output cable length is 4m.

